Development and reproducibility evaluation of a Monte Carlo-based standard LINAC model for quality assurance of multi-institutional clinical trials
نویسندگان
چکیده
Technical developments in radiotherapy (RT) have created a need for systematic quality assurance (QA) to ensure that clinical institutions deliver prescribed radiation doses consistent with the requirements of clinical protocols. For QA, an ideal dose verification system should be independent of the treatment-planning system (TPS). This paper describes the development and reproducibility evaluation of a Monte Carlo (MC)-based standard LINAC model as a preliminary requirement for independent verification of dose distributions. The BEAMnrc MC code is used for characterization of the 6-, 10- and 15-MV photon beams for a wide range of field sizes. The modeling of the LINAC head components is based on the specifications provided by the manufacturer. MC dose distributions are tuned to match Varian Golden Beam Data (GBD). For reproducibility evaluation, calculated beam data is compared with beam data measured at individual institutions. For all energies and field sizes, the MC and GBD agreed to within 1.0% for percentage depth doses (PDDs), 1.5% for beam profiles and 1.2% for total scatter factors (Scps.). Reproducibility evaluation showed that the maximum average local differences were 1.3% and 2.5% for PDDs and beam profiles, respectively. MC and institutions' mean Scps agreed to within 2.0%. An MC-based standard LINAC model developed to independently verify dose distributions for QA of multi-institutional clinical trials and routine clinical practice has proven to be highly accurate and reproducible and can thus help ensure that prescribed doses delivered are consistent with the requirements of clinical protocols.
منابع مشابه
Development and implementation of a Monte Carlo frame work for evaluation of patient specific out- of - field organ equivalent dose
Background: The aim of this study was to develop and implement a Monte Carlo framework for evaluation of patient specific out-of-field organ equivalent dose (OED). Materials and Methods: Dose calculations were performed using a Monte Carlo-based model of Oncor linac and tomographic phantoms. Monte Carlo simulations were performed using EGSnrc user codes. Dose measurements were performed using r...
متن کاملEvaluation of Electron Contamination in Cancer Treatment with Megavoltage Photon Beams: Monte Carlo Study
Background: Megavoltage beams used in radiotherapy are contaminated with secondary electrons. Different parts of linac head and air above patient act as a source of this contamination. This contamination can increase damage to skin and subcutaneous tissue during radiotherapy. Monte Carlo simulation is an accurate method for dose calculation in medical dosimetry and has an important role in opt...
متن کاملEvaluation of the electron energy fluence and angular distributions from a clinical accelerator. A BEAMnrc Monte Carlo study
Background: Understanding of the incident electron energy and angular distributions from clinical electron accelerators (linacs) is important for dosimetry and treatment planning. The most important goals of this study were to evaluate the energy fluence and angular distributions of electron beams from a Neptun 10PC linac using the Monte Carlo (MC) code. Materials and Methods: The lina...
متن کاملDesign and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
متن کاملThe comparison between 6 MV Primus LINAC simulation output using EGSnrc and commissioning data
Introduction: Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy. The purpose of this research is comparison between 6 MV Primus LINAC simulation output with commissioning data using EGSnrc and build a Monte Carlo geometry of 6 MV Primus LINAC as realistically as possible. The BEAMnrc and DOSXYZnrc (EGSnrc package) M...
متن کامل